Telegram Group & Telegram Channel
Среди статей на ICML нашел интересный топик - knowledge transfer from foundation models. Такая смесь дистилляции (которая фокусируется на переносе знаний между архитектурами) и трансфер лернинга (перенос знаний между задачами). Возьмем для примера две статьи, одна от Apple, другая от Amazon (неудивительно, что этим больше интересуются компании, чем университеты).

В Knowledge Transfer from Vision Foundation Models for Efficient Training of Small Task-specific Models авторы предложили т.н. task-oriented knowledge transfer - по сути нехитрая трехшаговая схема, что в каком порядке учить, что замораживать, как выбирать неразмеченный датасет. Ничего сверхординарного, зато много результатов экспериментов, подтверждающих полезность этой схемы.

Transferring Knowledge from Large Foundation Models to Small Downstream Models понравилась больше. В этой статье авторы предлагают своего рода выучиваемый feature selection поверх фичей из foundation моделей. Идея такая: надо заставить модель-студента выучивать только нужные фичи от учителя, а остальные можно игнорить (в отличие от обычной дистилляции, где студент должен выучить все, и обычно в пространстве предсказаний, а не фичей).

The core intuition behind AFT is that we want the downstream model to prefer making predictions based on information already present in the pre-trained features, as they are highly likely to contain useful knowledge for the downstream task, but without necessarily using all pretrained features, since not all of them will be relevant to the downstream task.

In contrast to KD, AFT does not penalize the downstream model (student) from forgetting some of the pretrained (teacher) features, and only penalizes learning extra features not extracted from pre-training.


Техническая реализация представляет собой дополнительную компоненту лосса, который регуляризует обучение основной модели, используя фичи от pretrained foundation модели. При этом можно использовать фичи сразу от нескольких моделей, и успешно дистиллировать их все. Кстати, оказалось, что для компьютерного зрения фичи из нескольких моделей более полезны, чем в NLP - авторы предполагают, что причина в большем разнообразии vision моделей по сравнению с однотипными языковыми трансформерами, обученными на одних и тех же датасетах.

Повторюсь: умение делать небольшие модели - важно и нужно.



tg-me.com/partially_unsupervised/230
Create:
Last Update:

Среди статей на ICML нашел интересный топик - knowledge transfer from foundation models. Такая смесь дистилляции (которая фокусируется на переносе знаний между архитектурами) и трансфер лернинга (перенос знаний между задачами). Возьмем для примера две статьи, одна от Apple, другая от Amazon (неудивительно, что этим больше интересуются компании, чем университеты).

В Knowledge Transfer from Vision Foundation Models for Efficient Training of Small Task-specific Models авторы предложили т.н. task-oriented knowledge transfer - по сути нехитрая трехшаговая схема, что в каком порядке учить, что замораживать, как выбирать неразмеченный датасет. Ничего сверхординарного, зато много результатов экспериментов, подтверждающих полезность этой схемы.

Transferring Knowledge from Large Foundation Models to Small Downstream Models понравилась больше. В этой статье авторы предлагают своего рода выучиваемый feature selection поверх фичей из foundation моделей. Идея такая: надо заставить модель-студента выучивать только нужные фичи от учителя, а остальные можно игнорить (в отличие от обычной дистилляции, где студент должен выучить все, и обычно в пространстве предсказаний, а не фичей).

The core intuition behind AFT is that we want the downstream model to prefer making predictions based on information already present in the pre-trained features, as they are highly likely to contain useful knowledge for the downstream task, but without necessarily using all pretrained features, since not all of them will be relevant to the downstream task.

In contrast to KD, AFT does not penalize the downstream model (student) from forgetting some of the pretrained (teacher) features, and only penalizes learning extra features not extracted from pre-training.


Техническая реализация представляет собой дополнительную компоненту лосса, который регуляризует обучение основной модели, используя фичи от pretrained foundation модели. При этом можно использовать фичи сразу от нескольких моделей, и успешно дистиллировать их все. Кстати, оказалось, что для компьютерного зрения фичи из нескольких моделей более полезны, чем в NLP - авторы предполагают, что причина в большем разнообразии vision моделей по сравнению с однотипными языковыми трансформерами, обученными на одних и тех же датасетах.

Повторюсь: умение делать небольшие модели - важно и нужно.

BY partially unsupervised


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/partially_unsupervised/230

View MORE
Open in Telegram


partially unsupervised Telegram | DID YOU KNOW?

Date: |

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

partially unsupervised from it


Telegram partially unsupervised
FROM USA